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SUMMARY

Probablllstlc composite mlcromechanIcs methods are developed that simu-

late uncertainties In unldirectlonal fiber composite strengths. These methods

are In the form of computational procedures using composite mechanics with
Monte Carlo slmulatlon. The variables for which uncertalntles are accounted

include constituent strengths and their respective scatter. A graphlte/epoxy

unidirectional composite (ply) is studied to illustrate the procedure and its

effectiveness to formally estlmate the probable scatter in the composlte unlax-

lal strengths. The results show that ply longitudinal tensile and compressive,

transverse compressive and Intralaminar shear strengths are not sensitive to

single flber anomalies (breaks, Interfaclal dlsbonds, matrix mIcrocracks); how-

ever, the ply transverse tensile strength is.

INTRODUCTION

The analysis of composite structures requires reliable predlctlve models

for material properties and strengths. However, the prediction efforts have

been complicated by inherent scatter in experlmental data. Slnce uncertainties
in the constituent propertles, fabrication variables, and internal geometry

would lead to uncertainties in the measured composite properties, the question
arlses:

How much of the "statistical" scatter of experimentally observed composite

properties can be explained by reasonable statistical distribution of

input parameters (prlmitlve variables) in composite mlcromechanIcs and

lamlnate theory predictive models?

In order to answer this question, a study was conducted to develop a com-

putational simulation procedure for probabilistic composite mlcromechanlcs
(ref. l). Application of this approach for unlax1al thermal and mechanical

properties Is summarlzed in reference 2. The objective of the present paper

is to describe this type of mlcromechanlcs for flber composlte unlaxlal

strengths and present typical results obtained therefrom. The computatlonal

slmulatlon is performed using ply substructurlng wlth an existing computer
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code (ref. I) for composite mechanics and In conjunction wlth Monte Carlo slmu-
latlon. The scatter In the constituent strengths is selected from anticipated
respective probablllstlc dlstrlbutlons.

COMPUTATIONALSIMULATIONFORPROBABILISTICCOMPOSITEMICROMECHANICS

In thls section, the formal approach to computatlonally simulate probabl-
listic composlte mIcromechanlcs Is summarized.

Determlnlstic/ProbabillstIc Model

The model commonlyused for deterministic composlte mechanics Is based on

the calculatlon of properties of the basic unlt of an orthotroplc ply. The

layup geometry is then used In laminate equatlons to calculate composite prop-

erties as shown schematlcally In figure 1(a). In the probabillstlc simulation

however, the basic unit Is taken as a subply (ply substructurlng) which con-

sists of only a single flber-matrix. Deterministic mlcromechanIcs theory

(refs. 3 and 4) Is used to predict the properties of the assumed orthotroplc

subply. The probabillstIc aspect Is Introduced by representing the scatter In

the fabrication variables and constltuent material properties. Probable fiber

mlsalignment within the ply are then used In the lamlnate theory equations to
predict ply properties. This substructurlng of the ply represents a novel

attempt at characterization of fiber composlte material properties based on
probabillstlcally distributed constituent properties, indlvidual fiber mlsal-

Ignment and fabrication process (primitive) varlables as shown schematically

In figure l(b).

Ply substructurlng In conjunction with composite mechanics Is partlcularly

we11-sulted to the probabiIIstic description of fiber composite materlal prop-

erties. The mlcromechanlcs and lamlnate theory equatlons can be used to calcu-

late ply propertles at any number of points In a ply. This approach provides

a ratlonal procedure for composite material property assessment because It

evaluates ply behavior as the result of a serles of random events (uncertain-

ties in the primitive variables) which occur at the Intraply or mlcromechanIcs
level.

Composite Mechanics

The probabillstIc simulation is performed by considering the ply as an

assembly (equlvalent lamlnate) of 15 subpIies. The composite mechanics used

In the slmulatlon Is that available In the Integrated Composite Analyzer

(ICAN) (ref. 5), which Is a computer program for comprehensive linear analysis

of multilevel fiber composite structures (ref. 5). The program contalns the

essential features requlred to effectively design structural components made

from flber composites. It now represents the culmination of research conducted

since the early 1970's at the Natlonal Aeronautics and Space Adminlstration

(NASA) Lewis Research Center (LeRC), to develop and code reliable composite

mechanics theorles. Thls user friendly, publicly avallable code Is depicted

schematically In flgure 2 and Is descrlbed in detail In reference 5.



Probabillstic Slmulatlon - Monte Carlo Methods

Compllcated probabilistlc events can be simulated by a variety of methods
generally referred to as MonteCarlo methods (ref. I). The term refers to
that branch of mathematics concerned with numerical experiments on randomnum-
bers. Since the advent of high speed computers, they have found extensive use
in most fields of science and engineering, in analyzing many physical processes

of a probabiIistic nature, or where physlcal experlmentation Is 11mlted or not
feasible.

A Monte Carlo simulation refers to the procedure where a single computa-

tlonal simulation is performed by randomly assigning a value to an independent

random varlable In a chosen model, and observlng the dependent variable at the

conclusion of the process being modeled. A Monte Carlo simulation is composed

of n such independent slmulations. When n is sufficiently large, the

observations will yleld a statistlcally meanlngful description of the physical
problem.

The form of Monte Carlo simulation used In the present Investigation is
as follows:

(I) Deflne the model by assuming that:

(a) It represents the composite mechanics

(b) It ]s formulated In terms of prlmitlve variables

(c) It has probability distributions for the scatter in each primitlve
variable

(2) Use the computer and random sampllng techniques to select values of

the prlmltlve variables from thelr respective distributions.

(3) Calculate dependent response varlables using the model.

(4) Replicate the experlment, each time with a new set of randomly sampled
input values.

(5) Use appropriate statlstlcal methods to calculate probability

distribution of the properties of interest.

(6) Estlmate regression parameters for the assumed model.

Computatlonal Simulation Procedure

To perform the computatlonal slmulation, a computer code was developed to

couple ICAN and an available statlstlcal analysls code (ref. l). The logic

dlagram for this code is shown in flgure 3. The steps are as follows:

(I) Select values for the prlmltlve variables for each subply from thelr

respective assumed probabilistic dlstributlons (flg. 4):

(a) Normal - constituent elastic properties and fiber volume ratio,
and fiber mlsallgnment



(b) Welbull - constituent strengths

(c) Gamma - for vold volume ratio

Fifteen different sets (one for each subply) are generated where the means and
scatter ranges for the primitive variable were those typlcal for AS graphite/
epoxy composite (tables I and II).

(2) Enter these values as inputs Into ICAN.

(3) Run ICAN and retrieve and store ICAN output for desired ply
properties.

(4) Repeat the process n-times where n Is sufficiently large
(50, herein) to provide data repeatability with an acceptable level
of confidence.

(5) Process the stored output using statistlcal analysis for cumulative
probability distributions, confidence levels and significance.

RESULTS AND DISCUSSION

Results obtalned by using the computational procedure descrlbed prevlously
are presented and discussed In thls section. The results are for ply unlaxlal
strengths, 1ongitudlnal tension (S_11T), longitudinal compression (ScIIC),
transverse tension (S_22T), transverse compression (S_22C) and Intralaminar
shear (S_12S). The results are presented In graphical form where the ply unl-
axial strength Is plotted versus fiber volume ratio for ranges of scatter as
represented by the Welbull shape parameter (_).

Longitudinal Tenslle Strength (S_llT)

The Influence of the scatter In fiber tensile strength on the ply longltu-
dlnal tensile strength Is shown in figure 5. Recall that the greater the value

of _, the smaller the scatter. It Is seen that the spread In S_liT In-
creases with increasing flber volume ratio. If we assume that the fiber

strength scatter increases wlth increasing fiber volume ratlo due to fiber con-

tact (abrasion) damage during processlng, the following is deduced from the

figure: the scatter In the ply longltudlnal strength will also Increase. For

example, we can see approximately from the flgure, the anticipated range for

SCIIT to be 132 < S_IIT/SfT S 144 ksl for a mean flber volume ratio of 0.5
and a mean fiber strength (SfT) of 400 ksi (table I). Thls range Is lower

than S_IIT , 200 ksl which Is estimated using deterministic composite mlcrome-
chanlcs (table Ill).

It Is important to recall that the probab111stlc ply strength was pre-

dicted by assuming that the ply fractures when the weakest flber (subply)
through its thickness fractures. Since the determlnistlc composite mlcrome-

chanlcs value Is considerably higher (about two tlmes), the concIuslons are

that: (1) a single fiber break Is not sufflclent to fracture the ply, (2) fi-

ber load redlstrlbutlon must take place, and (3) several flbers through the

ply thickness must break prior to ply fracture. This is consistent with what

Is common knowledge In the composites community. It Indlrectly demonstrates



the substantial fracture toughness Inherent in composite longitudinal tensile
strength relative to Isolated fiber breaks. These isolated fiber breaks have
negligible influence on ply strength/fracture. As a side comment, the probable
numberof fiber breaks prior to ply fracture can be computationally simulated
by accounting for fiber progressive fracture with slmultaneous load redistribu-
tion. The computational procedure will be analogous to that in CODSTRAN(Com-
poslte Durability Structural Analysis) for deterministic progressive composite
fracture (ref. 6) but applied to single fiber breaks.

Longltudlnal Compressive Strength (S_liC)

The influence of the scatter In fiber compressive strength on ply SC11C
strength is shown in figure 6 for the same _ ranges as for SCIIT. The
important observations from thls figure are (I) the curves peak at about
0.5 FVR and then decrease, and (2) the curves for each _ do not remain order-
consistent but cross over. Both of these occur because of the four different
fracture modes that are assumed to induce ply longitudinal compressive frac-
ture (ref. 4). It is also observed that the spread in S_IIC changes for the
different _'s with Increasing FVR. For example, the scatter between
equals 20 and I0 is greater for FVR 0.4 than for 0.6 and it is outside this
range. One important conclusion from these observations is that it would be
very dlfflcult to make consistent concluslons from experimental data for
S_IIC.

The range for S_IIC at 0.5 FVR from figure 6 is estimated between 117
and 122 ksl which is lower compared to the mlcromechanlcs estlmate of about
165 ksl. Again, the explanation is that a single flber fracture does not
cause ply fracture. And the ply is relatively insensitive to slngle fiber
anomalies. This Is a slgnlflcant flndlng In view of the prevailing contention
that slngle fiber anomalies are detrimental to ply 1ongltudlnal compresslve
strength.

Transverse Tenslle Strength (S_22T)

The influence of the scatter of the matrix tensile strength on SC22 T is

shown In flgure 7 for the same values in _ as for SCIIT and SCIIC. The
observations to be noted are: (1) the curves for the dlfferent :'s remain

order-conslstent; that is, no cross-over occurs, (2) the curves indicate that

SC22T continuously decreases with Increasing FVR, and (3) the spread in the
scatter decreases as the FVR increases.

The range in S_22T is between 9.0 and 10.4 ksl, which Is lower than

12 ksl (table llI) predicted by determlnlstlc composlte mlcromechanIcs. How-

ever, it Is within the range of experimentally observed data for this strength

(ref. 4). The authors conslder this an Important flndlng because it suggests

that transverse tensile strength may be strongly influenced by slngle flber
disbonds or mIcrocracks.

Transverse Compressive Strength (S_22C)

The influence of the scatter of the matrix compressive strength on

is shown in figure 8. The influence is slmilar to that for S_22T. The
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observations madefor SE22T are applicable to SE22C as well except for the
specific values comparisons. The scatter In S_22C Is between 20.6 and
23.8 ksl at 0.5 FVRwhich is considerably smaller than 27 ksl (table III) pre-
dicted by determlnistlc composlte micromechanlcs which Is also less than the

range of experimental data of about 30 to 35 ksl (ref. 4).

The authors attrlbute thls difference to indicate that the ply transverse
compressive strength Is not sensitive to slngle fiber anomalies as is the ply
transverse tensile strength.

Intralamlnar Shear Strength (SEI2S)

The influence of the scatter of the matrix shear strength on SCIIS is
shown in figure 9. The Influence Is similar to those for S_22T and S_22C
as would be expected slnce all of these are matrix controlled properties.
There Is some difference In the variation of scatter with FVR. The greatest
spread is at about 0.5 FVR for SE12S, whereas it progressively decreases with
increasing FVR for the other two.

The range in scatter for S_12S at 0.5 FVR is between 11.8 and 14.6 ksl
compared to 10 ksl estimated by deterministic composite mlcromechanlcs. The
authors interpret this good comparison to Indlcate the followlng two slgnlfl-
cant points (I) the In situ matrix shear strength is not influenced by the fab-
rication process and (2) the ply Intralamlnar shear strength Is not sensltlve
to single flber anomalies.

GENERAL DISCUSSION

The scatter In the ply unlaxial strengths described and discussed was lim-
ited to that influenced by respectlve scatter in fiber and matrix strengths.
Other factors influence the scatter as described in references l and 2. These

factors include scatter caused by single fiber anomalies in strength, interfa-
clal disbonds and matrix mlcrocracks.

The authors consider the probabilistlc simulation described in thls paper
as an illustration of what can be done to quantify the uncertaintles associated

with the numerous factors that Influence ply uniaxial strengths. They do not

consider the simulation to be complete nor the graphical results presented and

the respective numerical values discussed as absolute. The authors strongly

believe, however, that thls is a rational approach to formally represent uncer-

tainties assoclated with various factors that influence ply unlaxial strengths.
The results obtained to date demonstrate the authors' contention.

Regression results presented in reference l, but not summarized here due

to space limitation, indicate that factors Influencing unlaxial different ply

strengths are Important in specific ranges of FVR and that no generallzatlons
can be made at this time.

The authors hope that the description, results and discusslon summarized
herein, will stimulate other investigators to pursue probabilistlc representa-
tion of composite unlaxial strength behavior beyond the 1ongltudlnal tenslle
strength whlch has extenslvely been investigated over the years.



SUMMARY OF RESULTS

The important results of an investigation to computatlonally simulate the

probable scatter in composlte unlaxIal strengths as Influenced by scatter In

respective fiber and matrix strengths are summarized below.

I. A computational procedure has been described for probabillstlc compos-

Ite mlcromechanIcs for unlaxlal strengths.

2. The scatter range In the unlaxlal strengths Is represented In terms of

the Welbull shape function In the respective constituent material strengths
(fiber and matrix) for different fiber volume ratios.

3. Comparisons with respective determlnlstlc mean values and corresponding

experlmental data Indicate that ply longitudinal tensile, longitudinal compres-
sive, transverse compresslve and IntFalamlnar shear strengths are not sensitive

to single fiber anomalies. However, the ply transverse tensile strength Is.
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TABLE I. - COMPUTATIONAL PROCEDURE INPUT

DATA-FIBER PROPERTIES

Input

Theta, deg

C{

FVR

P
C_

VVR

WC

Efll, ksi

OK

Ef22, ksi

C(

Gfl2, ksi

Gf23 , ksi
g

_fl2

C(

_fll' PPm/°F

_f22' PP m/°F

Sf_, ksi

C(

Sf_, ksi

Deterministic

Case 1

0.0

0.50

O.Ol

31 000

2 000

2 000

I 000

0.2

0.2

5.6

400

400

Probabilistic

Case 2 Case 3

0.0 0.0
5.0 I0,0

0.5 0.5
0.1 0.2

0.3 0.3
0.03 0.05

31 000 3l 000
I 500 3 000

2 000 2 000
lOO 200

2 000 2 000
lO0 200

I 000 l OOO
5O lO0

0.2 0.2
0 0

0.2 0.2

0 0

5.6 5.6
0 0

400 400
20 lO

400 400
20 lO
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TABLE II. - COMPUTATIONAL PROCEDURE INPUT DATA

MATRIX PROPERTIES

Input

Em, ksi
H

_m

e.m, ppm/°F

Sm_, ksi

Sm_, ksi

Sm_, ksi

Deterministic

Case I

500

wmw

roll

36

15

35

_ww

13

Probabilistic

Case 2 Case 3

500 500
25 50

0.35
0.35 0.35

0 0

36 36
0 0

15 15
20 I0

35 35
20 I0

13 13
20 lO

TABLE IIl.- DETERMINISTIC

PLY PROPERTIES

[0 5 Fiber volume ratio.]

Property Value

E_I I, mpsi 15.8
_22, mps 1.06
GQI 2, mpsi 0.52
_QI2 0.28
_Q21 0.02
_11, ppm 0.08
_e22, ppm 18.4
_Q12 0
SaIIT, ksi 203
5Q11C, ksi 165
Se22T, ksi 12

SQ22C, ksi 27
Sa125, ksi lO
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ORTHOTROPIC PLY LAMINATE

(a) CONVENTIONAL -- MULTI FIBER PER PLY.

_M FIBER

ISALLIGNMENT

SUBPLY PLY

(b) PLY SUBSTRUCTURING - SINGLE FIBER PER PLY.
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MONTE CARLO SIMULATION OF UNCERTAINTIES IN PRIMIT[VE VARIABLES
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d
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SUBROUTINE --
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]CANMN

ENDFILE

GENERATE'I

WRITE

RANDOM

DATA

I
REWIND

DATA
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QUANTIFICATION OF PLY PROPERTY UNCERTAINTIES

I READDATA i
FROMFILE

I
CALL

STATISTICS

SUBROUTINES/
I PLOT
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FIGURE 3. - PROBABILISTIC COMPOSITE MICROMECHANICS COMPUTATIONAL PROCEDURE LOGIC DIAGRAMS.
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